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Abstract 

The relationships between weight functions, geometric functions, and compliance 

functions in linear elastic fracture mechanics 

by 

Rong Yuan 

Doctor of Philosophy in Engineering-Materials Science and Engineering 

University of California, Berkeley 

Professor R. O. Ritchie, Chair 

 
 

Linear elastic fracture mechanics is widely used in industry because it established 

simple and explicit relationships between the permissible loading conditions and the 

critical crack size that is allowed in a structure.  Stress intensity factors are the above-

mentioned functional expressions that relate load with crack size through geometric 

functions or weight functions.  Compliance functions are to determine the crack/flaw size 

in a structure when optical inspection is inconvenient.  As a result, geometric functions, 

weight functions and compliance functions have been intensively studied to determine 

the stress intensity factor expressions for different geometries.  However, the relations 

between these functions have received less attention.  This work is therefore to 

investigate the intrinsic relationships between these functions.   

Theoretical derivation was carried out and the results were verified on single-edge 

cracked plate under tension and bending.  It is found out that the geometric function is 

essentially the non-dimensional weight function at the loading point.  The compliance 

function is composed of two parts: a varying part due to crack extension and a constant 
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part from the intact structure if no crack exists. The derivative of the compliance function 

at any location is the product of the geometric function and the weight function at the 

evaluation point.  Inversely, the compliance function can be acquired by the integration 

of the product of the geometric function and the weight function with respect to the crack 

size.  The integral constant is just the unchanging compliance from the intact structure.  

Consequently, a special application of the relations is to obtain the compliance functions 

along a crack once the geometric function and weight functions are known.  Any of the 

three special functions can be derived once the other two functions are known.  These 

relations may greatly simplify the numerical process in obtaining either geometric 

functions, weight functions or compliance functions for new test geometries.   
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CHAPTER 1 
 

SYNOPSIS 
 
 

Fracture mechanics introduces the concept of fracture toughness into engineering 

design.  Fracture toughness relates the strength of a load bearing structure to the 

dominant crack size contained in that structure.  Consequently, one of the essential 

ingredients in fracture mechanics based analysis is to determine the crack size and the 

stress intensity factor at the crack tip [1].  Geometric functions, weight functions and 

compliance functions in linear elastic fracture mechanics (LEFM) have been intensively 

studied for use in determining these essential values.  The geometric function is 

employed to determine the stress intensity factor in a relatively simple stress state, e.g. a 

far field uniform stress or single point load; whereas the weight function gives a way to 

determine the stress intensity factor even in complicated stress states.  The compliance 

function is used to determine the crack length.  

Although the above functions have been well developed for different testing 

geometries and are widely available in handbooks for researchers and engineers, there 

have been no investigations into the relations between them except the known correlation  

between the geometric function and the load-point compliance function [2, 3].  Therefore, 

the purpose of this work is to investigate the intrinsic relations between geometric 

functions, weight functions and compliance functions in the framework of LEFM and to 

simplify the numerical process in obtaining such functions.  A brief introduction to 

fracture mechanics is presented in Chapter 2, discussing its definition and historical 

perspectives.  The relations between the three functions will be studied in Chapter 3. An 
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example on bending geometry will be given in Chapter 4 to illustrate the application of 

the relations between these functions.  Finally, conclusions will be drawn with some 

suggestions for future work. 
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CHAPTER 2 
 

BACKGROUND ON FRACTURE MECHANICS 
 
 

2.1   SCOPE AND DEFINITION 

As an interdisciplinary field of materials science and applied mechanics, fracture 

mechanics employs continuum mechanics to quantify “the conditions under which a 

load-bearing structure fails due to an enlargement of a dominant crack contained in that 

body” [1].  The definition may be understood in the following terms. 

First, fracture mechanics is different from other structural analysis methods because it 

assumes that defects already exist in any material and they invariably lead to failure.  

Furthermore, the failure originates from only one major crack.  Even though other defects 

exist, they are not supposed to initiate nor propagate in the presence of applied loads.  

Thus fracture mechanics is only applicable to analyze results from tests where a crack has 

to preexist.  For the same reason, all the standard fracture mechanics-based specimens 

have a notch as the major dominant crack/defect.  

Second, size effects are important in fracture since it is a phenomena occurring at 

multiple scales, from the atomic bond rupture at the angstrom scale, to dislocation motion 

involving hundreds of atoms, to cracking along grain boundaries at the micron scale, and 

to failure due to improper structure design at a large scale.  Usually only failure at one 

scale dominates the whole fracture process and the critical scale changes with the size of 

the structure in the application.  It is the materials scientist’s goal to find out this scale 

and identify failure mechanisms for different material system under different testing 

environments. It is the mechanics theoretician’s work to define the boundaries within 
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which scale the continuum mechanics apply and how all the properties and failure 

conditions determined from small-scale laboratory tests should be used in the scales of 

application.   

 Third, quantification is one of the main goals of modern science.  Without it, 

application would not be possible.  Failure conditions at different scales are quantified 

through different analytical models.  Under macroscopic conditions, the failure condition 

is quantified with continuum mechanics in terms of energy or load, etc.  Under 

microscopic conditions, a micro-mechanical model is established based on the failure 

mechanism at the critical scale.  For example, the failure mechanism in the ductile 

fracture of mild steels is identified as transgranular fracture, where the movement of 

dislocations is assumed to cause the failure.  Correspondingly, the micro-mechanics 

criterion for this mechanism is that the crack will initiate once the strain at the crack tip 

exceeds a maximum value.  

As depicted in Fig. 2.1, fracture mechanics is constituted of three elements: 

microstructure (materials), testing conditions (application requirements), and analytical 

models (both continuum mechanics and micro-mechanics). Fracture properties are 

calculated from the measured quantities in the tests with these models.  Since a property 

is a material’s response to some external stimuli, different combinations of microstructure 

and testing conditions require different macroscopic and micro-mechanical models to 

obtain the fracture properties. 

Contributions from two fields are required to understand fracture.  In the materials 

science field, the failure mechanism needs to be identified at the critical size scale to 

provide an understanding on the microstructure-mechanism-property relationship.  In the 
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mechanics field, macroscopic and micromechanical analytical models should be 

established based on observations and the failure mechanism to provide proper 

quantification.  Since the mechanism varies with different materials and different testing 

conditions, only the mechanics part will be reviewed.  

In the mechanics part, two basic tools are employed to quantify the failure conditions 

in fracture mechanics: thermodynamics and constitutive laws in continuum mechanics.  

By way of the first law in thermodynamics, crack length is related to energy through 

mechanical energy balance.  By way of different constitutive laws, failure connects 

energy terms with stress.  Thus energy becomes the bridge connecting the stress and the 

crack length.  This stress-energy-crack relation is also the essence of fracture mechanics.  

Below is a brief account of the theoretical part of fracture mechanics from two 

perspectives: the energy balance of a cracked system and the irreversibility of the crack 

propagation determined by thermodynamics, and the stress/displacement solutions at 

crack tip due to different constitutive laws.  

  

2.2   THERMODYNAMICS IN FRACTURE MECHANICS 

2.2.1 Some Terms in Thermodynamics 

Thermodynamics studies the mass and energy exchange between a system and its 

environment, as well as the energy conversion inside a system.  It only applies to systems 

in equilibrium that can be fully described by a few macroscopic thermodynamics 

properties.  For example, ideal gas can be studied by thermodynamics; whereas a 

computer cannot.  Before thermodynamics is applied to cracking problems, a few terms 

in thermodynamics need to be clarified for later discussion.   
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2.2.1.1 State Functions and Transitional Quantities 

Thermodynamics relates the seemingly irrelevant quantities such as temperature, 

pressure, and chemical potential, etc. through energy, or state functions.  State means a 

set of thermodynamic properties that describe a system in equilibrium.  State functions 

are different energy expressions in terms of these properties.  Typical state functions for 

solids are internal energy and Helmholtz free energy.  As mentioned earlier, 

thermodynamics studies the mass and energy exchange between different equilibrium 

states.  The energy exchange between states is accomplished through work and heat.  

Work and heat are means of energy transfer between states but they are not state 

functions. They usually cannot be expressed as a function of thermodynamic properties, 

only except during quasi-static transitions.  

2.2.1.2 Quasi-Static vs. Reversible Transitions 

Quasi-static transition is composed of continuous equilibrium states.  Only in this 

condition can work and heat be expressed by thermodynamic quantities according to the 

first law.  Reversible transition requires that both system and environment can return to 

their original states.  Reversible transition is always a quasi-static transition but the 

reverse is not true. 

2.2.2 Energy Release Rate by the First Law 

2.2.2.1 Energy Release Rate and Fracture Criteria 

Consider a quasi-static crack propagation process in a time-independent elastic solid 

body from crack size a1 (Fig. 2.2a) to a2 (Fig. 2.2d).  From the first law, the internal 

energy change of the cracked body comes from the mechanical work and heat exchange 

with the environment;  
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 U δ δ= + W Q , (2.1) 

where U is the internal energy, W is the work done on the system, Q is the heat exchange 

between the cracked body and the environment,  means the differential of state 

functions, and δ means the change of transitional quantities since work and heat are 

usually not state functions.  Then the question is how to determine the three terms in Eq. 

(2.1) by thermodynamic properties and experimentally measured quantities.    

In the left side of Eq. (2.1), the internal energy of the cracked body can be fully 

described by temperature, entropy, elastic strain energy, crack area, and the surface 

energy at crack surfaces.  Thus the change of the internal energy due to crack propagation 

in presence of load can be expressed as:  

 (2 )elastic
strainU T S U Aγ= + +   ( , (2.2)  

where T is temperature, S is entropy, elastic
strainU  is the elastic strain energy caused by external 

loading, γ is the surface energy at crack surfaces, and A is the crack area on one side.   

In the right side of Eq. (2.1), the work done on the system in a quasi-static process 

can be calculated from the load and displacement curve (as shown in Fig 2.2 e).   

 Pδ = = ∆ (W W , (2.3) 

where P is the load, ∆ is the total displacement at loading points.  The heat exchange in a 

quasi-static process is  

 T S=Q  . (2.4) 

Substituting Eqs. (2.2-4) into (2.1) and reforming it lead to 

 2elastic
strainU Aγ− =  W . (2.5) 
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Obviously, the condition quasi-static process eliminates the effect of heat to the cracking 

process, thereby reducing the first law to a simple mechanical work balance containing 

the information of crack size.  Further derivative of the left side of Eq. (2.5) with respect 

to the crack area leads to the definition of energy release rate (or crack driving force) G as: 

 strain

elasticU
A

−
=

 



W
G . (2.6) 

The right side of Eq. (2.5) is considered as fracture resistance R.  In time-independent 

elasticity, this resistance is twice the surface energy: 

 2γ=R . (2.7) 

Fracture resistance is not necessarily the surface energy. It varies with the constitutive 

behavior of the material.  

As a result the fracture criteria are based on energy release rate G and fracture resistance 

R as  

 ≥G R  (initiation), (2.8) 

and  

 
A A
>

 

 

G R  (propagation). (2.9) 

Eqs. (2.6, 8-9) hold not only elasticity, but also plasticity.  In elasticity, fracture resistance 

is a property; in plasticity, fracture resistance R is Fracture resistance is not necessarily 

the surface energy or a constant. 
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2.2.2.2 Meaning of the Energy Release Rate 

Energy release rate can be understood in the following aspects. 

As shown in the loading/unloading cycle of a cracked body (Fig. 2.2), the external 

work equals to the inside elastic strain energy when the crack is about to propagate (Fig. 

2.2b).  After propagation, the external work is used to create new crack surfaces and 

cause elastic strain inside the body at new crack length (Fig. 2.2c).  Upon unloading, 

elastic strain is released.  The energy difference between the states in Fig. 2.2a and 2.2d is 

just the energy for creating the new crack area, also the net work done on the system (or 

the area enclosed by the loading/unloading displacement curve) according to Eq. (2.5).  

So the net work done on the system after a loading/unloading cycle overcomes the 

resistance for crack propagation.  

A second view of the energy release rate is from the virtual work.  As mentioned 

earlier, the external work, or the actual work, is the area under a loading path in a quasi-

static process.  It is expressed as  

 'P
∆

= ∆∫ W , (2.10) 

Virtual work V is defined as the direct product of load and corresponding displacement 

regardless of the change of the load;  

 P= ∆V . (2.11) 

Notwithstanding the different concept, the incremental forms of the two work expressions 

are the same under constant load;  

 P P= = ∆  W V , (2.12) 



 10

where the subscript P means constant load control.  Thus the energy release rate or crack 

driving force under constant load control can also be expressed as  

 
*( )elastic

strain strainU
A A A

− Π
= = = −

  

  

V UG , (2.13) 

where *
strainU  is the complimentary strain energy, defined as  

 * elastic
strain strainU V U= − , (2.14) 

and Π  is the potential energy, defined as  

 elastic
strainU VΠ = − . (2.15) 

From Fig. 2.2e, potential energy and complimentary strain energy denotes the same 

area except the signs are opposite.  So the energy release rate is also the change of the 

complimentary energy (or potential energy) with respect to the extension of crack.  A 

third view of the energy release rate is by J-integral, which will be discussed in section 

2.2.3.3.  

With the expression of energy release rate determined, the work is calculated from the 

loading curve, and the strain energy is calculated based on different constitutive laws of 

the material.  Particularly in linear elasticity, Claypeyron theorem [2] indicates that the 

virtual work is twice the elastic strain energy, so the energy release rate is further 

simplified to  

 1
2

elastic
strain

P

U V
A A

∆

= =
 

 
G , (2.16) 

where the subscript ∆ means constant displacement control (or fixed boundaries).  So the 

energy release rate in linear elastic fracture is either the elastic strain energy release rate 
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under constant displacement control, or half the virtual work release rate under constant 

loading control.  

2.2.3 Historical Review on Energy Release Rate 

A brief review on the concept energy release rate is presented in this section with a 

focus on the postulates, contributions and limitations. 

2.2.3.1 Griffith’s Work in Elasticity 

Strength or maximum strain was recognized as the single parameter controlling 

fracture events in nineteenth century.  It was assumed that a structure failed once the 

stress or strain exceeded a critical value.  This concept was not challenged until Griffith 

employed the energy conservation and Inglis’ stress analysis to study the failure strength 

of a cracked elastic plate in the 1920s [3-5]. 

A. Postulates and Formulation 

Griffith considered a quasi-static propagation process in a cracked linear-elastic plate 

subject to far-field uniform tension.  Using the energy balance, he derived the expression 

of energy release rate as shown in Eq. (2.6).  He thought the fracture resistance for 

isotropic elastic material is just the surface energy and this surface energy should be a 

constant.  With constant resistance, the initiation and propagation criteria are simplified 

to one equation, i.e.  

 >G R . (2.17) 

His criterion implicates that the crack simply propagated upon initiation, which is true in 

most brittle materials.   
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Griffith then employed Inglis’ 2-D stress solution [3] to obtain an expression for the 

strain energy and established a relation between failure strength Fσ  and the crack size 

through Eq. (2.16);  

 4 2
F

E E
a a
γσ

π π
= =

R , (2.18) 

where E is Young’s modulus either in plane strain ( 2/(1 )E ν− ) or plain stress (E) 

condition, ν is Poisson’s ratio, and a is the crack size.  Since Inglis’ solution is for 2-D or 

3-D cases where thickness is not a variable, the energy release rate is expressed in terms 

of crack size instead of crack area. 

Griffith further extended his expression for failure strength to atomic scale.  He 

replaced the crack length a with the atomic bond length ρ in Eq. (2.18) and obtained the 

so-called theoretical ultimate strength thσ :  

 4
th

Eγσ
πρ

= . (2.19) 

Griffith searched literature on the surface energy for different materials and found the 

theoretical ultimate strength was about tenth of Young’s modulus based on Eq. (2.19); 

~ /10th Eσ .  Therefore, the far-field failure strength for any cracked elastic material 

could be quickly determined from the size of the crack contained in that body:  

 
10F th
E

a a
ρ ρσ σ= ∼ . (2.20) 

 B. Contributions and Limitations 

With the energy balance theorem and stress analysis, Griffith laid a solid foundation 

for fracture mechanics.  He not only quantified the failure strength with respect to the 
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crack size, but also formulated the crack driving force from mechanical energy 

conservation.  In addition, he recognized the surface energy as the fracture resistance in 

isotropic elastic material, and also formulated a criterion for crack initiation and 

propagation.  His conclusion of the dependence of failure strength on crack size was 

verified by experiments on brittle materials.  This success leads researchers to consider 

flaw size, instead of detailed microstructure parameters, as a dominant factor in 

determining the strength of brittle solids.   

However, no attempt is perfect.  Some limitations exist in Griffith’s work.  

First, Griffith stressed that his results were valid only for reversible crack propagation 

process.  It is misleading.  Quasi-static process can fully guarantee the validity of the 

mechanical energy balance, as discussed in section 2.2.2.  This reversibility problem has 

been haunting researchers ever since Griffith’s work and different theories has been 

yielded to try to reconcile the “admissible reversibility” with some contradicting 

experimental results.  Thermodynamics itself does not specify whether the crack could 

reverse or not.  Further research work needs to be done to understand the mechanism for 

this admissible reversibility.  

Second, Griffith recognized surface energy as the source of fracture resistance.  

Experiments on most metallic materials show much higher failure strength based on Eq. 

(2.18).  It means that other energy dissipation processes occur during crack propagation 

rather than creating new surfaces.   

Third, the expression for theoretical ultimate strength in Eq. (2.19) is controversial 

since continuum mechanics does not hold at atomic scale.  Even if Eq. (2.19) was right, it 

has different meaning from Eq. (2.18).  In Eq. (2.18), the crack with length a is the 
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largest flaw in the structure and there is only one such crack.  This condition guarantees 

that cracking only occurs around the largest crack.  In contrast, all the atoms have the 

same atomic distance (ρ).  Therefore, Eq. (2.19) implies that all the atomic bonds rupture 

at the same time; a solid piece breaks into atoms instantly.  This is an explosive manner 

and it rarely happens in practice.   

2.2.3.2 Irwin’s Modification for Plasticity 

Griffith’s work yields the correct functional relationship between failure stress and 

the crack/flaw size and it was verified by many results on brittle-behaving materials.  

However, results on small ductile-behaving test pieces showed extensive plastic 

deformation and the failure strength value was much higher than the one given by Eq. 

(2.19).  To solve this problem, Irwin introduced included the plastic deformation in the 

sources of fracture resistance.   

A. Formulation 

In time-independent deformation, strain energy stored in a loaded structure is 

composed of two parts: elastic strain energy that can be released during unloading, and 

plastic strain energy ( plastic
strainU ) that remains inside the structure even after unloading.  

Correspondingly the internal energy of a cracked structure is expressed as   

 (2 )elastic plastic
strain strainU T S U U Aγ= + + +    ( . (2.21) 

The energy release rate is defined in the same manner as in Eqs. (2.6,13).  On the 

contrary, the expression for fracture resistance with plasticity becomes:  

 2 2
plastic

plasticstrainU
A

γ γ γ= + = +



R , (2.22) 

where plasticγ  is defined as the plastic strain energy per unit crack area. 
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Irwin recognized the plastic deformation as part of the fracture resistance and simply 

replaced the term R in Eq. (2.19) with (2.22).  The failure strength in the presence of 

plasticity becomes:  

 2 2 (2 )plastic

F
E E

a a
γ γσ

π π
+

= =
R  (2.23) 

B. Contributions and Limitations 

Irwin’s tentative work on plasticity recognized the plastic deformation as the source 

of the fracture resistance; however, it is successful due to the following problems.  

First, by simply adding the plastic deformation into the resistance, Irwin assumed that 

Inglis’ solution still held in the plastically deformed body.  However, the stress 

distribution inside the structure changes when plasticity occurs.  So Eq. (2.23) does not 

give a correct quantification of the failure strength with crack size. 

Second, Irwin did not give a recipe for measuring the plastic deformation, which 

made the experimental verification impossible.   

Third, one important aspect of fracture mechanics is that all the properties and failure 

conditions determined from small-scale laboratory tests should be the same as used in the 

scales of application.  Since the elastic deformation is released during unloading, 

extrapolation to different scales is not a problem in elasticity once the theory of elasticity 

still holds.  In plasticity, however, size-dependent problem arises because the plastic 

deformation remains in the structure upon unloading and amount of permanent 

deformation varies with the size of the structure.  This means the resistance quantified 

from a laboratory specimen is only meaningful to that size, but loses the extrapolation to 

other scales.  Consequently, researchers have made distinction between small scale 
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yielding and large scale yielding.  Fracture properties (or failure conditions) under small 

scale yielding can be applied to structures at different size scales because the plastic 

deformation zone is so small compared to the size of the loaded structure that the amount 

of plastic deformation is invariant for a structure of different size scales.  On the contrary, 

fracture properties under large scale yielding lose the extrapolation to other size scales.   

2.2.3.3 J-integral Method 

A. Formulation 

Independent of Eshelby’s work, Rice proposed a path independent J-integral as the 

energy release.  Rice considered a 2-D case (Fig. 2.3) where J-integral  is defined as [6]  

 
0

2
1

( )i
i

uJ w x t l
xΓ

∂
= −

∂∫   , (2.24) 

where w is the strain energy density, 1 2,x x are Cartesian coordinates, i is the index for 

Cartesian coordinates, Γ0 is the boundary of the test piece that starts from one end of the 

crack surface and ends at the opposite side, t is the traction acting on Γ0, u is the 

displacement, and l is the length of the boundary Γ0.  Note that Γ0 is not a closed path. 

J-integral is in nature the strain energy release rate derived from the complimentary 

strain energy (Eq. (2.13)) by Green and Gauss’s theorems;  

 0

0
2

1

( )
( )

i i
i

i

t u l w uw x t l J
a x

Γ Ω

Γ

− Ω ∂
= = − =

∂
∫ ∫

∫G
  

 


. (2.25) 

Detailed proof of Eq. (2.25) is provided by Kanninen [1].  Rice further proved that J-

integral of any closed loop in an elastic field is zero.  The energy release rate can be 

evaluated from any path in an elastic field on the specimen by Eq. (2.24). 
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B. Discussion 

J-integral was considered as a generalized energy release rate for any cases [7]; 

however it is not true.  J-integral has the following restrictions.  i) It is only applicable to 

small scale yielding elastic-plastic 2-D fields, or 3-D structures where thickness has to be 

constant.  The derivation of Eq. (2.25) involves linear coordinate transformation.  The 

deformation has to be small so that the coordinate transformation is still linear in scales.  

ii) J-integral is path independent only on condition that the integrand in Eq. (2.24) has no 

singularity and the integral is bounded along any path in an elastic field.  For example, J-

integral is zero along 0Γ -crack surfaces- 1Γ  or 1Γ -crack surfaces- 2Γ  (Fig. 2.3), where 1Γ  

is an arbitrary path, and 2Γ  is the elastic-plastic interface.  Crack tip is considered a 

singularity although the integral is bounded at the tip.  Therefore the J-integral is not zero 

along a closed path containing crack tip ( 2Γ -crack surfaces), but the energy release rate.  

iii) The path can only lie in elastic field and cannot cross the plastic-elastic boundary. 

Besides the energy release rate, J-integral also means the energy flow across the 

selected path into the specimen, or the net work done during a loading/unloading cycle in 

a closed path.  Consider the closed path 0Γ -crack surfaces.  After crack propagation, the 

energy left in the path is the energy for plastic deformation in the plastic zone (enclosed 

by 2Γ -crack surfaces) and for creating new crack surfaces, which is just the net work 

done in Fig. 2.2e. 

By the first law of thermodynamics, energy release rate is formulated in a quasi-static 

crack propagation process in a time-independent deformable structure with small scale 

yielding.  Eqs. (6,13) are expressions for a general 3-D case, whereas J-integral is only 
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for 2-D structure.  In addition, crack initiation and propagation criteria are also proposed 

(Eq.s (2.8-9)).  

 

2.3  CONSTITUTIVE LAWS 

Constitutive laws are the other important factor in the theory of fracture mechanics 

because they are used not only to determine the strain energy for the energy release rate, 

but also to yield the stress/displacement solutions in the structure.  The 

stress/displacement fields at crack tip are of particular interest since they help to 

understand the microstructure behavior.  Consequently, the stress solutions at crack tip 

are summarized for elastic, and elastic-plastic with small scale yielding fields.  Emphasis 

is placed on the postulates, but not the derivation or solutions. 

2.3.1 Linear Elasticity 

In linear elasticity, the displacement and stress solutions of an isotropic body at crack 

tip can be determined by complex variable method[5, 8] in a 2-D plane.  The solutions 

take the following form near the crack tip: 

 ( ) ( )
2i i
ru K rα θ
π

= Ψ +Ο , (2.26) 

and 

 ( ) ( )
2ij ij
K r

r
ασ θ
π

= Θ +Ο , (2.27) 

where σ is the stress, K is an undetermined constant controlling the magnitude of the 

stress and the displacement at the crack tip, α represents the loading mode of tension, 

shear, and tear, respectively, r and θ are the polar coordinates with crack tip as the origin, 

i and j are indices for either Cartesian or polar coordinate system, Ψ(θ) and Θ(θ) are the 
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angular dependence respectively for displacement and stress distribution, and ( )rΟ  

represents the higher-order terms of r .   

Irwin [9] ignored the higher-order terms in Eqs. (2.26-27) and integrated the work 

needed to form a new crack.  By this way, the undetermined constants are found to be 

related with the energy release rate in the following way: 

 
2 2 2

2
I II IIIK K K

E µ
+

+ = G , (2.28) 

where µ  is the shear modulus.  K is therefore defined as stress intensity factor, linking 

important quantities at different scales.  At macroscopic scale, K2/E is the energy release 

rate, the driving force applied to the elastic body; at microscopic scale, K determines the 

amplitude of the stress at the crack tip.  Thus the loading conditions for each crack length 

could be calculated from stress intensity factor, instead of crack driving force. 

According to Eq. (2.27), the stress becomes infinite large at the crack tip.  This is 

impossible in real materials since they would yield first at certain stress.  Then small 

scale yielding at the crack tip is considered to modify this unbounded solution from linear 

elasticity. 

2.3.2 Linear Elasticity-Perfect Plasticity 

To solve the singularity of the stress solution at the crack tip, linear elasticity-perfect 

plasticity is considered at the crack tip.  The constitutive behavior is shown in Fig. 2.4.  

Only case in Mode I is considered.    

2.3.2.1 Irwin’s Solution 

Irwin only considered the normal stress at the crack tip and formulated a force 

balance in uniform tension (Fig. 2.5).  In the presence of plasticity, the stress at the crack 
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tip is the yield strength Yσ  in the plastic zone with a size of Pr , and takes the form of 

elastic solution (Eq. (2.27)) in the elastic zone.  The elastic solution of the normal stress 

yyσ  near the crack tip along the crack is (θ = 0):  

 
2

I
yy

K
r

σ
π

= . (2.29) 

In plane stress condition, the characteristic length Yr  at yielding is solved from Eq. (2.29),  

 21 ( )
2

I
Y

Y

Kr
π σ

= . (2.30) 

Force balance in y-direction requires that the area under the broken curve (
2
K

rπ
) is 

the same as under the solid curve.  Therefore, the two gridded regions should have the 

same area;   

 
0

Yr

Y P yyr rσ σ= ∫  . (2.31) 

Combining Eqs. (2.29-31) lead to:  

 212 ( )I
P Y

Y

Kr r
π σ

= = . (2.32) 

The stress solution in the elastic region can be viewed as if the origin shifted with a 

length of yr .  Therefore, Irwin’s stress solution (in plane stress condition) for single 

normal stress in presence of the perfect plasticity is:  
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 (2.33) 

Irwin ignored the triaxial stress distribution at the crack tip and only considered a 

single force balance in tension direction.  He also assumed that the elastic stress outside 
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the elastic zone still took the same form as the solution in linear elasticity.  His analysis 

implies that the crack tends to be blunt in the presence of plasticity, so that the crack 

seems to be longer.  These implications were verified by Wells’ experimental observation 

[10].    

2.3.2.2 Von Mises Yield Criterion 

This method considers the triaxial stress state at the crack tip.  For multiple stress 

state, yielding occurs once the effective strength eσ  exceeds the yield strength Yσ  

determined under uniform tension according to von Mises criterion.  The effective 

strength is defined as:  

 2 2 2 1/ 2
1 2 2 3 3 1

1 [( ) ( ) ( ) ]
2eσ σ σ σ σ σ σ= − + − + − , (2.34) 

where 1σ , 2σ , and 3σ  are the three principal normal stresses determined from the triaxial 

stress at the crack tip by Mohr’s circle.  In perfect plasticity, the plastic zone under mode 

I determined from Eq. (2.34) is shown in Fig. 2.6. 

Linear elasticity-strain hardening plasticity is also considered for the stress solutions 

at the crack tip.  The details can be found in any books on advanced fracture mechanics 

[1, 7].  

2.3.3 Cohesive Zone Models 

Cohesive zone models assume that a zone with cohesive stress exists ahead of the 

crack tip.  Dugdale [11] prescribed the shape of the cohesive zone and the proposed a 

stress distribution inside the cohesive zone.  With the above postulates, he derived the 

length of the cohesive zone in terms of applied stress, yield strength, and the crack size.  

Barenblatt [12] did not prescribe the shape of the cohesive zone or assume any stress 
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distribution inside the zone.  He deemed the work to open the cohesive zone as the source 

of the crack resistance.  With energy balance and boundary conditions he derived the 

stress and displacement solutions inside the cohesive zone.  The comparison of the two 

models is listed in Table 2.1.  A brief account of the two models is presented below with 

an emphasis on postulates and assumptions.  Note that all the solutions are under Mode I. 

2.3.3.1 Dugdale’s Model: Linear Elasticity-Perfect Plasticity  

Dugdale’s cohesive zone model [11] has the following postulates.  i) The normal 

stress yyσ  ahead of the crack is the dominant stress responsible for crack propagation 

under mode I.  ii) a plastic zone of length d with constant stress Yσ  exists ahead of the 

crack tip.  The shape of the zone is determined by the following conditions.  iii) The 

experiment was performed on thin steel plate (Fig. 2.7a) so the plane stress condition 

holds ( 0zzσ = ).  iv) He considered the steel as a linear elastic-perfectly plastic material.  

By Tresca yield criterion and Mohr’s circle method, the shear stress lies in the x2-x3 

plane at 45 degrees to x2 coordinates (Fig. 2.7b). Therefore, the height of the zone is the 

same as the thickness of the plate.  v) The length of the cohesive zone d is determined 

from Muskhelishvili’s solution [11] as a function of far-field applied stress Aσ , yield 

strength Yσ , and crack size a. 

Dugdale performed a series of tests on steel sheets with varying applied stress and 

crack size.  The experimental results of the plastic zone length d agreed well with the 

prediction values solved by Muskhelishvili’s method.    

2.3.3.2 Barenblatt’s Work 

Barenblatt [12] also assumed a cohesive zone existed ahead of the crack tip.  

Different from Dugdale, he did not specify the shape of the plastic zone or the stress 
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distribution inside the zone.  His work is based on three hypotheses: i) the length of the 

cohesive zone (d) is small compared to the size of the crack; and ii) the stress distribution 

p(r) (not specified) inside the cohesive zone is invariant regardless of the external loading 

conditions (magnitude of the load, loading positions and so on).  iii) The cohesive stress 

must satisfy the following relation:  

 
0

( ) ( )
d

Ip r r K=∫   (2.35) 

By Eq. (2.35), Barenblatt implied the linear elastic nature of the cohesive stress by 

default although the stress value exceeds the yield strength.  He also recognized that the 

fracture resistance should come from the cohesive zone.  With Eq. (2.35) and other 

boundary conditions, Barenblatt derived solutions for stress and displacement fields in 

the cohesive zone. 

 

2.4  SUMMARY 

My view of fracture mechanics was presented in this chapter.  A definition of 

fracture mechanics and its scope were discussed first, followed by the theory of fracture 

mechanics reviewed from two aspects: energy and constitutive laws.  In the view of 

energy balance, the concept of energy release rate was developed from the first law of 

thermodynamics.  In the view of constitutive laws, stress solutions at crack tip for 

different material behaviors were discussed.  These models are all for quasi-static crack 

propagation in time-independent deformable solids with small scale yielding.  With the 

theoretical background laid for fracture mechanics in this chapter, linear elastic fracture 

mechanics will be investigated in detail in the next chapter with a focus on some special 

functions for quantifying the energy release rate (or stress intensity factors).   
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TABLES AND FIGURES 

 
Table 2.1 Comparison of Dugdale and Barenblatt’s cohesive zone models 

 Dugdale Barenblatt 

2-D problem Plane stress condition 
Either plane stress or 

plane strain condition 

Cohesive zone 

shape 

Height is the same as thickness. 

Length d is a function of , ,A Ya σ σ  

Not specified, 

but length d << a 

Constitutive law Linear elasticity-perfect plasticity Linear elasticity 

Method Muskhelishvili’s method 
Not specified, but solved by 

Eq. (2.35) and BCs*. 

Cohesive stress Constant, Yσ  Not constant 

 

* BCs means boundary conditions.
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Fig. 2.1  Scheme of fracture mechanics as an interdisciplinary field of materials science and solid mechanics. 
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Fig. 2.2  A quasi-static crack propagation in a cracked elastic body from crack size a1 (a) 
to a2 (d) after a loading-unloading cycle (e).  When the crack is about to propagate (b), 
the external work done on the system is balanced by the elastic strain energy (area A and 
B).  After propagation, the external work is balanced by the elastic strain energy (area B 
and D) at the new crack length and the surface energy of the new crack (area A and C). 
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(e) Load-displacement curve of a loading-unloading cycle in a cracked elastic body. 
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Fig. 2.3  A cracked 2-D elastic solid structure Ω, where 0Γ  is the boundary enclosing Ω 
except the crack surfaces, 1Γ  is an arbitrary path inside Ω, and 2Γ  is the elastic-plastic 
interface.  The region enclosed by 2Γ  and the crack is the plastic deformation zone.  
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Fig. 2.4  Different constitutive behaviors of materials, where Yσ is the yield strength 
determined from uniform tension test and Yε  is the strain resulting from the yield 
strength.  
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Fig. 2.5  Irwin’s elastoplastic stress solution at the crack tip under small scale yielding 
condition.  The broken curve represents the stress solution at the crack tip in linear 
elasticity, and the solid curve is Irwin’s stress solution at the crack tip for linear elastic-
perfectly plastic material under small scale yielding condition.  
 

r 

σyy 

σY 

rp 

rY 

θ = 0 

2
K

rπ

2 ( )
eff

y

K
r rπ

≈
−



 31

 
 
 
 
 
 
 

 
 
 
Fig. 2.6  The plastic zone shape at the crack tip under Mode I by von Mises criterion.  
The crack tip is located at the origin.  Crack is located along –x axis. The plot shows the 
contour of the constant equivalent stress eσ  (= Yσ ) upon yielding respectively in plane 
stress and plane strain condition.   
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Fig. 2.7  Illustration of Dugdale’s Model. A crack resides in a large steel sheet subject to 
far-field uniform tension. The length of the cohesive zone (a) is d, and the height of the 
cohesive zone (b) is the same as the thickness. The slip lines are 45 degrees to the x2 and 
x3 axes.  
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CHAPTER 3 

 

THE RELATIONSHIPS BETWEEN WEIGHT FUNCTIONS, 

GEOMETRIC FUNCTIONS, AND COMPLIANCE 

FUNCTIONS IN LINEAR ELASTIC FRACTURE 

MECHANICS 

 

 

3.1   INTRODUCTION 

Linear elastic fracture mechanics (LEFM) employs linear elasticity, a branch of 

continuum mechanics, to quantify the loading conditions at which an isotropic, linear 

elastic structure fails due to an extension of a major crack contained in it.  Linear elastic 

fracture mechanics is well-established and has been widely used in industry.  As 

discussed in the last chapter, the stress intensity factor replaces the energy release rate as 

the macroscopic energy parameter that relates the external loading with the flaw size.  

Accordingly, an essential element in LEFM is to formulate the expressions for stress 

intensity factors in terms of external loading and the flaw size.  Geometric functions, 

weight functions, and compliance functions are developed for the above purpose.  

Geometric functions and weight functions are utilized to obtain the stress intensity factors 

once the following information is known: flaw size, loading and loading positions, and 

the geometry of the structure.  Compliance functions are employed to determine the crack 
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length when optical observation is inconvenient.  These functions have been intensively 

studied; nevertheless, the relations between them have received less attention.  Therefore, 

the aim of the work is to investigate the relationships between geometric functions, 

weight functions and compliance functions in linear elastic fracture mechanics. 

A brief introduction is presented in section 3.2 on geometric functions, weight 

functions and compliance functions in LEFM.  The relations between the three functions 

under mode I are studied in section 3.3, followed by an example on single-edge cracked 

plate under tension and bending in section 3.4 to illustrate the application of the relations 

between these functions.   

 

3.2   SPECIAL FUNCTIONS 

This work only considers solutions for symmetric specimens under symmetric 

loading in Mode I with small infinitesimal deformation in a 2-D linear elastic isotropic 

material.  As a result, the following statements hold true: i) The direction of crack 

propagation is perpendicular to the applied loading under Mode I; ii) The direction of 

displacement is the same as the loading direction in small infinitesimal displacement case; 

iii) Field force (body force), such as gravity, electromagnetic field, etc., is not taken 

account into the derivation; iv) The x-coordinate is taken along crack, i.e., the symmetric 

line of the specimen, and y-coordinate is in line with loading line, as shown in Fig. 3.1a 

and 3.1b; and v) The thickness of any specimen is invariant so that the 2-D solution of 

stress intensity is applicable in 3-D structures. 
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  Consider a symmetric specimen under symmetric loading (Fig. 3.1).  The virtual 

work is formulated by Eq. (2.11):  

 2 2 ,lpPu B t u l
Γ

= = ∫V   (3.1) 

where lpu is the load-point displacement, B is the thickness, Γ is one side of the boundary 

where the traction t is applied, l is the length of Γ, and u is the resulting displacement.  Γ 

is only taken on one side due to symmetry of the stress distribution and the geometry of 

the specimen.  Hence the energy release rate is obtained from Eq. (2.16), i.e.  

 
2 ( )1

2
lpI

P

t u luK P
E B a B a a

Γ= = = = ∫VG
 

  
. (3.2) 

3.2.1 Geometric Function 

Stress intensity factors are so far the most successful concept applied in engineering 

design because researchers developed the expressions of the stress intensity factors in 

terms of external loading for different geometries:  

 

*( / ) ( )

( / ) ( ),

I A AK aQ a W W Q
P Pf a W f

B W B W

σ π σ α

α

= =

= =
 (3.3) 

where σA is externally applied far-field stress uniform along the width (W) of the 

specimen, α (= a/W) is the normalized non-dimensional crack length, ( )Q α  and f(α) are 

the geometric functions respectively for far-field stress and a pair of concentrated force, 

and *( ) ( )Q Qα πα α= .  
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3.2.2 Weight Function 

Weight functions are a powerful and cost-effective tool to determine the stress 

intensity factor and displacement of an isotropic linear-elastic body in presence of 

complicated loading.  It is defined as  

 ( , )( , )
2 ( )I

PI

E u x ah x a
K a a

∂
=

∂
, (3.4) 

where ( , )Ih x a  is the weight function in mode I, and x  is an arbitrary position in the 

specimen.  A non-dimensional form of the weight function, ( , )Ih x α , is defined as: 

 ( , )( , ) ( , )
2 ( )I I

PI

E u xh x W h x a
K W

αα
αα

∂
= =

∂
. (3.5) 

The weight function is derived from Betty’s theorem [1].  Details of the derivation 

can be found in Wu’s book [2].  Only in symmetric geometry under symmetric loading 

does the weight function have unique solution[3].  

With complicated loading, the stress intensity factor is indeed an integral of the 

traction and the weight function along the boundary;  

 
( ) 2 ( ) ( , )

2 ( ) ( , ) , .

I I

I

K t x h x a l

W t x h x l x

α

α
Γ

Γ

=

= ∈Γ

∫
∫




 (3.6) 

Displacement can also be determined from the weight function by rearranging Eqs. (3.4)

and (3.5). 

 
0

2( , ) ( ') ( , ') ' ( )
a

I I ncu x a K a h x a a u x
E

= +∫  ; (3.7) 

 
0

2( , ) ( ') ( , ') ' ( )I I nc
Wu x K h x u x

E
α

α α α α= +∫  , (3.8)  
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where ( )ncu x  is an integral constant at position x , representing the displacement caused 

by the structure if no crack exists.  The meaning of this integral constant will be 

addressed in detail in section 3.3.4.   

3.2.3 Compliance Function 

Compliance (C) is the ratio of deformation to load, i.e. the reciprocal of stiffness.  

Deformation may be displacement or strain; loading may be concentrated force, far-field 

stress, or bending moment.  In this work, compliance is defined as the ratio of relative 

displacement between two symmetric points with respect to loading.  

In isotropic linear elastic material, deformation and load has a linear relationship.  

This enables the compliance as a method to determine the in-situ crack length since the 

compliance value only depends on the ratio, but not specific magnitude of the load.  The 

non-dimensional compliance is expressed as a function of normalized crack length; 

 

2 ( , )( , )

2 ( , ) ,
A

EB u xC x
P

E u x
W

αα

α
σ

=

=
 (3.9) 

where ( , )C x α  is the non-dimensional compliance function of position x  and crack 

length.   

 

 

 



 38

3.3  RELATIONSHIPS BETWEEN GEOMETRIC FUNCTIONS, WEIGHT 

FUNCTIONS, AND COMPLIANCE FUNCTIONS 

3.3.1 Weight Function and Geometric Function 

Consider loading the material with two symmetric-concentrated forces.  Combining 

Eqs. (3.2), (3.3), and (3.5) yields 

 ( ) 2 ( , )If h lpα α= . (3.10) 

In the case of loading with a far-field uniform stress, the following relation holds:  

 
2 ( , )

( ) 2 ( , ),
h x l lQ h avg x

W W

α
α αΓ= = ∈Γ∫ 

, (3.11) 

where ( , )h avg α  is the average weight function along boundary Γ.   

Eqs. (3.10) and (3.11) show that the geometric function is indeed the non-dimensional 

weight function.  The factor of 2 represents the symmetry of loading, displacement, and 

geometry in the specimen.  Weight functions are essentially only determined by the 

geometry of the test piece and the evaluation positions. The geometric function is 

therefore determined by loading position and the geometry of the structure.  

3.3.2 Weight Function and Compliance Function 

By combining and rearranging Eqs. (3.3),(3.5) and (3.9), the following is obtained:   

 
( , ) 4 ( ) ( , )

4[ ( )] ( , ).

I

I

C x f h x

Q h x

α α α
α

πα α α

∂
=

∂
=

 (3.12) 

Eq. (3.12) shows that the compliance function is determined by geometry of the structure, 

loading positions, the crack size, and the evaluation point.  
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By integrating Eq. (3.12), the compliance function becomes 

 
0

no crackdue to crack

0

( , ) 4 ( ') ( , ') ' ( )

4[ ' ( ')] ( , ') ' ( ),

I nc

I nc

C x f h x C x

Q h x C x

α

α

α α α α

πα α α α

= +

= +

∫

∫





 (3.13) 

where  

 

2 ( )( )

2 ( ) .

nc
nc

nc

A

EBu xC x
P

Eu x
Wσ

=

=
. (3.14) 

Eqs. (3.13) and (3.14) can also be derived from (3.8).  Eq. (3.13) implies that the 

compliance of a cracked body is composed of two parts: a constant value part 

independent of the crack and a varying part due to the presence of the crack.  The 

meaning of the integral constants ( )ncu x  and ( )ncC x  will be discussed in 3.3.4. 

3.3.3 Geometric Function and the Load-Point Compliance Function 

In the case of two symmetric concentrated forces, combining Eqs. (3.10) and (3.12) 

yields the following relation at the loading point: 

 2( , ) 2[ ( )]C lp fα α
α

∂
=

∂
. (3.15) 

This is a well-known relation between the load-point compliance and the geometric 

function [4] in case of two symmetric concentrated forces. 
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3.3.4 Discussion  

3.3.4.1 Integral Constants for Displacement Fields and Compliance Functions 

Consider the cracked body in Fig. 3.2a.  Since superposition holds true for both 

displacement and stress fields in linear elasticity, the displacement and stress fields for 

any loaded structure can be viewed as superposition of two bodies: one with stress acting 

upon crack surfaces and another with concentrated forces applied to the intact body 

(without crack).  When a crack propagates at constant load, the contribution of 

displacement/compliance due to the intact body remains the constant; whereas the 

contribution of displacement/compliance due to the crack increases.  The displacement 

contribution from the intact body is calculated with the specific load, loading position and 

geometry of the structure.  However, the compliance of the intact body is only 

determined by the loading position and geometry of the structure due to the constant 

compliance in linear elasticity.   

One application of Eq. (3.13) is to calculate the crack opening displacement and the 

crack opening compliance in a symmetric specimen with symmetric loading.  In this case, 

the contribution of displacement/compliance from the uncracked body is zero due to the 

symmetry, so no integral constants are needed.    

3.3.4.2 Comparison of the Special Functions 

As shown in Table 3.1, the weight function is unique and ubiquitous in LEFM.  It is 

only a function of the geometry of the structure, which changes in evaluation position and 

crack length.  It is independent of the loading position.  The geometric function is, in 
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essence, a non-dimensional weight function at the loading position.  A compliance 

function is composed of two parts: one part that changes due to crack extension and a 

constant part from the intact structure which is without any crack.  The changing part of 

the compliance is the integral of a product of weight functions at loading position and the 

evaluation position, respectively.   

 

3.4   AN EXAMPLE ON SINGLE-EDGE CRACKED PLATE 

Single-edge cracked plate (Fig. 3.3a) is a geometry widely employed in fracture and 

fatigue tests.  It is used in either uniform tension (Fig. 3.3b) or bending configuration (Fig. 

3.3c).  Although the loading position is different in the above two methods, the weight 

function is the same, independent of loading positions.  The weight function at the crack 

mouth can be determined by the crack-mouth opening displacement (CMOD) compliance 

function and the geometric function for single-edge cracked plate under uniform tension.  

Then the CMOD compliance function for bend specimen can be calculated by the weight 

function and the geometric function for bending configuration since the integral constant 

is zero in symmetric specimen under symmetric loading.   

3.4.1 Uniform Tension 

As shown in Fig. 3.3b, the stress intensity factor for single-edge cracked plate under 

tension is [4] 

 
30.752 2.02 0.37[1 sin( / 2)]( ) 2 tan( / 2)

cos( / 2)
Q α παα πα

πα
+ + −

= . (3.16) 
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The expression for ( )Q α  is accurate within ± 0.5% for 0 < α < 1.  The CMOD 

compliance for single-edge cracked plate under tension is [4]:  

 2

2 ( , ) 1.46 3.42(1 cos( / 2))4
[cos( / 2)]A

Eu cm
W

α παα
σ πα

+ −
=  (3.17) 

where ( , )u cm α  is the displacement at the crack mouth.  This expression is accurate 

within ± 1% for 0 < α < 1.  With the geometric function and the compliance function 

known, the weight function at the crack mouth is obtained by Eq. (3.12).  The values are 

compared with Fett’s solution [5] (Fig. 3.4):  

2 3 4 3/ 21 (0.84683 0.07567 11.7732 11.6391 4.0684 ) /(1 )( , ) .
2

h cm α α α α αα
πα

+ − + − + −
= (3.18) 

Fett’s solution is accurate within ± 3% for 0 < α <0.85.  The discrepancy is within ± 5% 

between the solutions derived from Eq. (3.12) and provided by Fett.  

3.4.2 CMOD Compliance for the 3-Point Bend Specimen 

According to ASTM E399, the bending span is four times the width for single-edge 

cracked plate under 3-point bending (Fig. 3.3c).  If the stress intensity factor is expressed 

in terms of concentrated force, the geometric function is: 

 
2

3/ 2

6 [1.99 (1 )(2.15 3.93 2.7 )]( )
(1 2 )(1 )

f α α α α αα
α α

− − − +
=

+ −
 (3.19) 

This expression for the geometric function is accurate within ± 0.5% for 0<α<1.  In this 

loading configuration, the concentrated force is parallel to the crack; therefore, the 

geometric function is related to the non-dimensional weight function in mode II.   
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With the weight function and the geometric function known, the CMOD compliance 

function for 3-point bend specimen is obtained from Eq. (3.13).  The results are 

compared with the known solution from ASTM E399 (Fig. 3.5):  

 2 3
2

0.66( , ) 24 (0.76 2.28 3.87 2.04 )
(1 )

C cm α α α α α
α

= − + − +
−

, (3.20) 

which is accurate within ± 1% for 0<α<1.  The discrepancy between solutions derived 

from Eq.  (3.13) and provided by ASTM E-399 is within ± 4%. 

This example verifies the relations between geometric functions, weight functions 

and compliance functions in Eqs. (3.12) and (3.13).  It shows that any function of the 

above three functions could be obtained once the other are known and can be used to 

simplify the numerical process. 

 

3.5   SUMMARY AND CONCLUSIONS 

Geometric functions, weight functions, and compliance functions are important in 

linear elastic fracture mechanics.  The following conclusions can be reached. 

1. All the three functions are functions of crack length and evaluation point.  

Particularly, the geometric function is evaluated at loading position, which is in 

essence the non-dimensional weight function.  Eq. (3.15) always holds true 

whether load is perpendicular or parallel to the crack. 
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2. Weight functions are only determined by geometry of the specimen, whereas 

geometric functions and compliance functions are also influenced by loading 

distribution and position.   

3. Displacement/compliance of a cracked body is composed of two parts: changing 

part due to crack extension and a constant part of the structure if the crack did not 

exist.  In addition, the derivative of compliance with respect to the normalized 

crack is proportional to the product of the geometric function and the weight 

function at the evaluation point.   

4. The displacement/compliance function at any point can be obtained by Eqs. (3.8) 

and (3.13) respectively.  The integral constant, i.e., the contribution can be solved 

from the structure if crack did not exist.  This will greatly simplify the numerical 

process in obtaining the displacement/compliance solution using traditional 

method. 
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Tables and Figures 

 

Table 3.1  Comparison of geometric functions, weight functions and compliance 

functions. 

 
Variables Determined by 

Dependence Crack 

size 
Evaluation point Geometry 

Loading position & 

distribution 

Weight 

function 
Yes Yes Yes No 

Geometric 

function 
Yes 

Fixed at loading 

position 
Yes Yes 

Compliance 

function 
Yes Yes Yes Yes 



 46

 
 

(a) concentrated force                          (b) stress field on boundary ∂Ω 
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Fig. 3.1  Symmetric specimen under symmetric loading of either (a) concentrated 
forces or (b) traction along the boundary. The load-displacement curve shows that the 
actual work is the area OAB and the virtual work is area OABC in LEFM.  
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Fig. 3.2  Schematic plots of linear superposition of displacement field, stress field, and 
stress intensity factor in an elastic body with different crack length, subjected to a 
constant load.  Obviously, the contribution of displacement, stress, and stress intensity 
factor are all constant if the external loading is constant during crack propagation. 
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Fig. 3.3  Scheme of single-edge cracked plate (a) loaded under far-field uniform tension 
(b) and under 3-pt bending (c).
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Fig. 3.4  Plot of the non-dimensional weight function of single-edge cracked plate at the 
crack mouth as a function of normalized crack length α, showing the weight function 
derived from Eq. (3.12) employing the relation between the geometric function and the 
CMOD compliance function (solid circles), as compared to Fett’s solution [5] (solid line). 
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Fig. 3.5  Plot of the non-dimensional CMOD compliance function of 3-pt bend geometry 
as a function of normalized crack length α, showing the compliance function derived 
from Eq. (3.13) (solid circles), as compared to the solution according to ASTM E399 
(solid line). 
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CHAPTER 4 
 

ELASTIC COMPLIANCE FUNCTIONS FOR THE 

NOTCHED FOUR-POINT BEND SPECIMEN 

 

 

An example is given on single-edged four-point bend (4PB) specimen to illustrate the 

relationships between geometric functions, weight functions and compliance functions.  

The compliance functions are numerically determined and experimentally verified 

respectively for crack-mouth opening displacement compliance, back face strain (BFS) 

compliance, and load-point displacement (LPD) compliance.  With the weight function 

solutions given by Fett [1] for 4PB geometry, the geometric function is determined 

independently from the LPD compliance function by Eq. (3.15) and from the CMOD 

compliance function by Eq. (3.12).  The solutions obtained from those two methods 

show a good agreement, also verifying the conclusions from Chapter 3.   

 
 

4.1   INTRODUCTION 

The single-edge notched four-point bend specimen (SE(B)) is a widely used test 

geometry in fracture research due to its ease of testing, and the fact that it provides a state 

of pure bending, i.e., a constant bending moment between the inner two loading points 
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(minor span).1  Although not defined in ASTM E 399 standard for fracture toughness 

testing, geometric functions have been determined for calculating the stress-intensity 

factor KI in this specimen geometry as a function of the ratio of the minor span length to 

the specimen width, d/W [1, 3-5].  Corresponding crack compliance functions for this 

geometry, however, have received less attention, thereby limiting its use for 

compliance-based in situ crack-length measurements.  There are solutions for the 

crack-mouth opening displacement (CMOD) for pure bending with d/W = 4 [4-6], and 

recently numerically determined and experimentally verified CMOD compliance 

solutions have been published for d/W = 2 [7, 8].  In addition, Huh [9] reported a 

back-face strain compliance solution for d/W = 4.  

As there has not been a systematic study of the complete compliance/crack length 

relationships for the notched four-point bend sample, we present in this note the elastic 

compliance solutions for this test geometry in terms of the crack-mouth opening 

displacement, back-face strain compliance, and the load-point displacement, over the 

range of crack length (a) to width (W) ratios (α = a/W) from 0.3 to 0.8.  These solutions 

are applicable to the determination of the fracture toughness and for use with in situ 

monitoring of subcritical crack growth in this test specimen.  

 
 
 

                                                        
1 This is well utilized in the double-notched version, which is being increasingly used to identify the 
mechanistic events prior to crack initiation [2]. As both notches experience the same bending moment, 
when one fractures, the other is “frozen” just prior to fracture and can then be examined metallographically 
(or otherwise) to identify the “precursor” microstructural events leading to fracture.   
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4.2   EXPERIMENTS AND SIMULATION 

4.2.1   Specimen Geometry and KI Solutions 

To diminish any influence of shear stress resulting from the bending moment outside 

the minor span (which might cause an underestimate in the energy release rate) and from 

concentrated stresses at the loading points (which might affect the strain energy field 

around the notch/crack tip), we examine a four-point SE(B) sample with a large major 

span where the minor span is at least twice the width [10].  To minimize rotation caused 

by deviation of the load-point displacements from the load line, we choose the major 

span to be 4W and the minor span to be 2W (Fig. 4.1).  

The Mode I linear-elastic stress-intensity factor (KI) for this pure bending geometry is 

proportional to the remote stress, i.e., the moment, and the geometric factor Q(α), where 

a is the crack length; it is given for different moment spans with d/W = 2 as [6]:  

 3/ 2

1/ 2

( )

6 ( )

( )

IK W Q
M Q

BW
P f

BW

σ α

α

α

=

=

=

  (4.1) 

and  

 
2 3 4( ) (2.434 20.57 78.94 127.5 80.91 )

( ) 3 ( ),
Q
f Q
α πα α α α α
α α

= − + − +
=

 (4.2) 

where P/2 is the load applied at each loading point, B is the specimen thickness, M is the 

bending moment, and f(α) is the geometric function in terms of load.  Eq. (4.2) is 

accurate to within ± 1.0% for 0.2 ≤ α ≤ 0.8 [5]. 
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4.2.2   Experimental Procedures 

Two four-point bend specimens were machined from AISI 1080 plain carbon steel to 

the dimensions indicated in Fig. 4.1.  To measure the back-face strain (ε) compliance, a 

350 Ω strain gauge, with a 1.57 mm gauge length, was attached to the back face of each 

specimen, centered along the symmetry line opposite the machined notch.  To measure 

the crack-mouth opening displacement, 2 ( , )u cm α , a double-cantilever clip-on 

displacement gauge (Model 632.02E-20, MTS, Eden Prairie, MN) was placed across the 

notch mouth. 

Cracks were introduced by razor micro-notching and were measured under the optical 

microscope.  At each crack length, the specimen was carefully loaded to minimize local 

yielding, whereupon measurement of the elastic compliance was made during unloading.  

4.2.3   Numerical Methods 

Finite-element modeling was performed to ascertain the back-face strain, 

crack-mouth opening displacement and load-point displacement at 51 values of the 

normalized crack length, from α = 0.3 to α = 0.8; each value was separated by an 

increment of α = 0.01.  The calculations were performed using the commercial 

finite-element code ABAQUS, assuming the material was linearly elastic and isotropic 

with Young’s modulus E = 207 GPa, and Poisson’s ratio v = 0.3.  Plane-strain conditions 

were assumed for all calculations.  The calculations were performed on a mesh with 

approximately 9,000 degrees of freedom. 
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4.3   RESULTS AND DISCUSSION 

4.3.1   Crack-Mouth Opening Displacement (CMOD) 

As noted above, the four-point SE(B) specimen used here is the limiting case of a 

pure bending geometry.  For pure bending specimen, the crack-mouth opening 

displacement is given by [5]: 

 1 1
242 ( , ) 4 ( ) ( )W Mu cm V V

E EBW
σα α α α α= = . (4.3) 

The non-dimensional CMOD compliance function is found by rearranging Eq. (4.3): 

 1
2 ( , ) 24 ( )EBW u cm V
M

α α α= . (4.4) 

For d/W = 2, the experimental non-dimensional CMOD compliance results are 

compared in Fig. 4.2 with our finite-element solutions, as well as the calibration function 

of Tarafder et al. [7].  The numerical solutions are in good agreement with experiment 

and with the previous solutions [7].  A polynomial fit of the normalized CMOD 

compliance function is shown in Table 4.1.  For application in the direct measurement of 

crack length, Eq. (4.4) is rearranged to express the normalized crack length, α, as a 

function of CMOD compliance with the coefficients listed in Table 4.1.  

To show the effect of the minor span to width ratio, the numerical CMOD compliance 

data obtained respectively by Gross[6], Tada[5], and Nisitani[11] for d/W = 4 are 

included for comparison.  It is apparent that the crack-mouth opening displacement for 

the four-point bend sample increases (at constant bending moment) with the minor span 

to width ratio; however, the difference is small for α < 0.4.  
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4.3.2   Back-Face Strain (BFS) Compliance 

The back-face strain, ε, can be expressed as: 

 2 22

6( ) ( )MV V
E EBW
σε α α= = . (4.5) 

Consequently, the non-dimensional BFS compliance function is given by: 

 
2

26 ( )EBW V
M

ε α= . (4.6) 

The experimentally measured and numerically calculated back-face strain 

compliance is shown in Fig. 4.3 as a function of normalized crack length.  The 

corresponding sixth-degree polynomial-fit function is given in Table 4.2, and describes 

the experimental results to better than 5% for 0.3 ≤ α ≤ 0.8.  For use in the direct 

measurement of crack length, Eq. (4.6) is rearranged to express the normalized crack 

length as a function of BFS compliance; coefficients are also listed in Table 4.2. 

To show the effect of the minor span to width ratio, BFS compliance data from Huh 

and Song [9] for d/W = 4 are included in Fig. 4.3.  It is apparent that the back-face strain 

compliance is independent of the minor span to width-ratio, when d/W ratio is greater 

than 2. 

4.3.3   Load-Point Displacement (LPD) 

The non-dimensional load-point displacement, lpu , can be expressed as: 

 ( , ) ( )lpEBu
C lp g

P
α α= = . (4.7) 

Finite-element calculations of the load-point compliance as a function of normalized 
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crack length are shown in Fig. 4.4.   

Since no experimental data exists, the LPD compliance function obtained by the 

FEM method is checked indirectly through the geometric function.  The geometric 

function is related to the LPD compliance by Eq. (3.15) [5]: 

 ( , )( )
2

C lpf αα
α

=



. (4.8) 

The geometric function is also independently related to the CMOD compliance by the 

weight function method: 

 1 ( , ) /( )
4 ( , )

C cmf
h cm

α αα
α

∂ ∂
= . (4.9) 

If the LPD compliance is right, the weight function derived from Eq. (4.8) should be the 

same to that derived from Eq. (4.9).  Fig. 4.5 shows the geometric function for the pure 

bend loading geometry (d/W =2) obtained from the LPD compliance and CMOD 

compliance respectively.  The difference in the geometric function solutions obtained by 

above two methods is less than 6%, which confirms the validity of the load-point 

displacement solution.  

  In order to apply this compliance solution for direct measurements of crack length, 

listed in Table 4.3 are the corresponding sixth-degree polynomial fit function of the LPD 

compliance and its inverse function to express the a/W as a function of LPD compliance. 
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4.4   SUMMARY AND CONCLUSIONS 

A full set of elastic compliance functions is derived for the single-edge notched 

four-point (pure) bend SE(B) fracture geometry based on crack-mouth opening 

displacements, back-face strain compliance and load-point displacements. Good 

agreement was obtained between experimentally measured and numerically computed 

solutions for crack lengths varying between 30 and 80% of the sample width (0.3 ≤ a/W ≤ 

0.8).  Mathematical expressions for the three compliance calibrations are presented for 

use in the direct measurement of crack length with this test specimen. 
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TABLES AND FIGURES 
 
Table 4.1.  Coeffeicients for crack-mouth opening displacement compliance calibration 

function: 2 3 4 5
0 1 2 3 4 524 ( )EBW

M
δ α β β α β α β α β α β α= + + + + + , and the inverse CMOD 

compliance calibration function for crack length measurement: 

' ' ' 2 ' 3 ' 4 ' 5
0 1 2 3 4 5

a U U U U U
W

β β β β β β= + + + + + , where 1
/ 1

U
EBW Mδ

=
+

, for 0.3 ≤ a/W ≤ 

0.8. 
 

Degree, i Coefficient, βi Coefficient, β'i 

0  -55.76 1.009 

1  609.2 -3.853 

2  -2552 2.202 

3  5279 -0.1630 

4  -5380 28.26 

5  2189 -43.68 
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Table 4.2.  Coefficients for back-face elastic strain compliance calibration function: 
2

2 3 4 5 6
0 1 2 3 4 5 66( )EBW

M
ε β β α β α β α β α β α β α− = + + + + + + , and the inverse back-face 

strain compliance calibration function for crack length measurement: 

' ' ' 2 ' 3 ' 4 ' 5 ' 6
0 1 2 3 4 5 6

a U U U U U U
W

β β β β β β β= + + + + + + , where 
2

1
/ 1

U
EBW Mε

=
− +

, for 0.3 

≤ a/W ≤ 0.8. 
 
 

Degree, i Coefficient, βi Coefficient, β'i 

0  66.022 1.0006 

1  -848.39 -1.4396 

2  4539.1 -16.221 

3  -12727 134.73 

4  19838 -723.11 

5  -16310 2009.6 

6  5568.4 -2318.6 
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Table 4.3.  Coefficients for load-line displacement compliance calibration function: 
2 3 4 5 6

0 1 2 3 4 5 66( )EB
P

β β α β α β α β α β α β α∆
= + + + + + + , and the inverse CMOD 

compliance calibration function for crack length measurement: 

' ' ' 2 ' 3 ' 4 ' 5 ' 6
0 1 2 3 4 5 6

a U U U U U U
W

β β β β β β β= + + + + + + , where 1
/ 1

U
EB P

=
∆ +

, for 0.3 ≤ 

a/W ≤ 0.8. 

 

 

Degree, 

i  

Coefficient, βi Coefficient, β'i 

0  61.962 -0.057 

1  -782.93 45.024 

2  4181.6 -853.75 

3  -11709 8155.7 

4  18217 -43643 

5  -14945  123443 

6  5086.5 -145492 
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Fig. 4.1.  Four-point bending specimen with major span (S) to width (W) of 4, and minor 

span (d) to width ratio of 2. The moment span is (S-W)/2, and B is the thickness. A strain 

gage is placed on the center of the back face and a double cantilever clip-in displacement 

gage is placed across the crack mouth. The details of the crack-mouth geometry can be 

seen in ASTM E 399. 
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Fig. 4.2.  Plot of the crack-mouth opening displacement compliance calibration, as a 

function of crack length, for the single-edge notched four-point bend specimen (d/W = 2) 

showing both the experimental data (open circles) and the numerical solution (filled 

circles), as compared to Tarafder et al.’s finite-element solution (solid line) [7].  The 

numerical compliance calibration for d/W = 4 is included for comparison [5, 6, 11]. 
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Fig. 4.3.  Plot of the back-face strain compliance calibration, as a function of crack 

length, for the single-edge notched four-point bend specimen (d/W = 2) showing both the 

experimental data (open circles) and the numerical solution (filled circles), along with the 

polynomial fit function (solid line).  The numerical and experimental compliance 

calibration for d/W = 4 is included for comparison [9].  



 66

 

Fig. 4.4.  Plot of the 4PB (d/W = 2) load-point displacement compliance calibration, as a 

function of crack length, for the single-edge notched four-point bend specimen (d/W = 2) 

showing both the numerical solution (filled circles) and the polynomial-fit function (solid 

line). 
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Fig. 4.5.  The geometric function for calculating the linear-elastic stress-intensity factor 

for the single-edge notched four-point bend specimen with the minor span to width ratio 

of d/W = 2. The solid line represents the solution derived from CMOD compliance by Eq. 

(4.9), and the filled circles represent the solution derived from the load-point 

displacement solutions computed in this study. 
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CHAPTER 5 
 

CONCLUSIONS 
 
 

The relationships between geometric functions, weight functions, and compliance 

functions were investigated in linear elastic fracture mechanics.  The relationships were 

verifies by examples on single-edge cracked plate under tension and bending.  The 

following conclusions can be reached:  

1. The weight function is the most fundamental function in linear elastic fracture 

mechanics.  It is only determined by the geometry of the structure, independent of 

the loading or loading distribution.  The geometric function is essentially the non-

dimensional weight function at the loading point.  The compliance function is 

composed of two parts: a varying part due to crack extension and a constant part 

from the intact structure if no crack exists.  The changing part of the compliance 

function reflects the collaborative deformation response from the loading position 

and the evaluation point due to crack propagation.  Therefore, both the 

compliance function and the geometric function depend on the geometry of the 

specimen and the loading positions.  

2. The derivative of the load-point compliance function with respect to crack 

extension is always twice the square of the geometric function in LEFM. 

3. Any of the three functions can be obtained once the other two are known.  The 

compliance function is acquired from the integration of the product of the 

geometric function and the weight function at the evaluation point with respect to 

the crack size.  The integral constant is the unchanging compliance from the 
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structure if no crack existed.  A special application of this integration is to 

develop the compliance functions along the crack since the integral constant is 

zero along the crack for symmetric specimens under symmetric loading.  

With respect to the future work, methods should be developed for obtaining 

compliance values of the intact structure without crack for different geometries.  Also a 

review should be carried out on geometric functions, weight functions, and compliance 

functions for the frequently used test geometries.   

The study on the relationships between geometric functions, weight functions, and 

compliance functions reveals not only the intrinsic relations between these functions, but 

also the dependence of each function on the testing conditions (the geometry of the 

structure, the loading positions, etc.).  These relations may greatly simplify the numerical 

process in obtaining either geometric functions, weight functions or compliance functions 

for new test geometries.   

 




